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Abstract
Motile cilia are a highly conserved organelle found on the exterior of many human 
cells. Cilia beat in rhythmic patterns to transport substances or generate signaling 
gradients. Disruption of these patterns is often indicative of diseases known as 
ciliopathies, whose consequences can include dysfunction of macroscopic 
structures within the lungs, kidneys, brain, and other organs. Characterizing ciliary 
motion phenotypes as healthy or diseased is an essential step towards diagnosing 
and differentiating ciliopathies. We propose a modular generative pipeline for the 
analysis of cilia video data so that expert labor may be supplemented for this task. 
Our proposed model is divided into three modules: preprocessing, appearance, 
and dynamics. The preprocessing module augments the initial data, and its output 
is fed frame-by-frame into the generative appearance model which learns a 
compressed latent representation of the cilia. The frames are then embedded into 
the latent space as a low-dimensional path. This path is fed into the generative 
dynamics module, which focuses only on the motion of the cilia. Since both the 
appearance and dynamics modules are generative, the pipeline itself serves as an 
end-to-end generative model. This thorough and versatile model allows experts to 
spend less time caught in the minutiae of cilia biopsy analysis, while also enabling 
new insights by quantifying subtle patterns that would be otherwise difficult to 
categorize

Objective
We aim to develop an unsupervised representation for videos of cilia that accounts for 
both spatial and temporal patterns in an independent and disentangled manner. We 
split this problem into three core components:

1. Preprocessing
2. Spatial Modeling
3. Temporal Modeling
These tasks are handled by the preprocessing, appearance and dynamics modules, 
respectively. While these tasks are not purely independent, they can be considered 
independent for the sake of organization. This also allows for each module to be 
changed separately without impacting the development of the others. This results in 
greater extensibility and flexibility.

Preprocessing

Dynamics

Conclusion
This project proposes a modular, generative pipeline for learning a factored 
spatiotemporal representation of cilia. The modular nature of the project facilitates 
exploration and ensures extensibility while also allowing for an efficient and 
powerful representation. This research is still currently at an early stage, with focus 
primarily on the preprocessing and appearance modules, with many plans for 
future research into refining this pipeline.
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We begin our pipeline with preprocessing module which is used to extract useful 
information and augment the raw video source. This module:
1. Extracts optical flow (OF) fields
2. Segments cilia
3. Augments starting videos/frames with the OF fields and segmentation maps to 

feed into the appearance module

The preprocessing module accomplishes two main goals: segmentation and optical 
flow extraction. Segmentation is needed as a precursor to the appearance module to 
ensure that the module learns a representation for only the cilia. In an average video 
from our dataset, the cilia occupy a tiny minority of the actual frame, whereas most of 
it is either the background, or a cell. Segmenting out the cilia themselves greatly 
reduces the bandwidth required by the appearance network, allowing it to focus on 
only the cilia. 

An optical flow (OF) field is a vector map that attaches displacement vectors to pixels 
in a frame. Dense OF is a variant which assigns such a vector to every pixel. Since 
cilia are very small and often have non-linear movement, we utilize dense OF to 
capture as much information as possible. The OF is useful since often times cilia 
exhibit significantly more local movement than the cells they’re attached to or the 
image backgrounds, making them stand out in the OF field. However, dyskinetic cilia 
tend to be borderline stationary, which makes them undetected utilizing OF alone. 
Thus the OF field can be appended to the frames as input to the appearance network 
to allow the network to learn a spatial representation from the motile cilia which can 
hopefully extend to immotile cilia as well. Further research is needed to determine the 
efficacy of this methodology.

The appearance module can accept any augmented frames from the preprocessing 
module in the form of multi-channel images, with each additional type of information 
concatenated as an additional channel. Segmentation maps, however, are 
processed separately. The entire augmented frame is then pixel-wise multiplied 
against the segmentation maps before being encoded, allowing the VAE to focus 
on only the cilia in the frame. The reconstruction objective of the VAE is thus also 
only the cilia portion of the original frame.
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Pipeline

The appearance module accepts the augmented frames as input and uses a 
Variational Autoencoder (VAE) [1] to learn a potent compressed spatial representation 
of cilia, or alternatively, a good spatial latent space. A well constructed spatial latent 
space means that:

1. The relative location of embedded points in the latent space has semantic 
significance

2. Most noise/unnecessary information in the source data is excluded in the 
compressed representation

3. Temporally coherent sequences of frames (videos) get mapped to well-behaved, 
continuous sequences of points in the latent space (paths or trajectories)

The final module is the dynamics module which also utilizes a VAE to learn a 
temporal representation of cilia based on how the spatial representation changes 
over time based on the sequences of the points embedded in the spatial latent space. 
This means that, since the latent space contains primarily semantically meaningful 
traits, the temporal representation is primarily based on semantically meaningful 
temporal patterns.

Figure 2. Frame of a cell and its cilia on the left, with the corresponding OF field 
on the right.

Appearance
Figure 1. The pipeline starts with the preprocessing module which augments the dataset, 
then feeds into the appearance module to generate a spatial representation which is utilized 
by the dynamics module to generate a temporal representaiton.

The appearance module utilizes a convolutional VAE with ResNet like encoder and 
decoder. The normal unit Gaussian prior is replaced with a VampPrior [2] and a novel 
regularization term is added to the VAE loss to encourage the VampPrior 
pseudo-inputs to look like natural data.

The dynamics module is trained and operated strictly on the spatial latent space 
generated by the appearance module, and thus is sensitive to the efficacy of the prior 
modules. Operating on the appearance module’s compressed representation omits 
the vast amount of noise and redundancy intrinsic to video datasets, and in particular 
our cilia dataset. This allows the dynamics module to focus on the changes and 
patterns within the meaningful spatial latent space, narrowing the scope of its 
learning, allowing for a simpler architecture as compared to operating on the raw 
videos themselves. 

The dynamics module takes as input a sequence of points in the spatial latent space 
and aims to represent the motion intrinsic to the entire sequence. A straightforward 
approach might be to simply attempt to compress and recreate the entirety of each 
sequence, to encourage the robustness of the representation, we assert that while the 
model encodes the entire sequence, it ought to be able to decode and reconstruct 
arbitrary subsequences. This mitigates the risk of having the temporal representation 
couple and encode the length of a sequence as well, allowing us to arbitrarily 
generalize sequences so that we may even predict unobserved future elements.

Figure 3. Dynamics module architecture. Encodes a full sequence, decodes an 
arbitrary subsequence


